< 5주차 실험 공지 >

커패시터의 충전 및 방전 (실험 교재 p46 ~ p47)

- 교재의 전압 및 저항을 사용하는 것이 아닌 <u>반드시 공지에 주어진 전압, 커패시터,</u> <u>저항을 사용</u>합니다.

- 5주차 실험은 아래의 실험 1, 2 모두 진행합니다.
- 예비 보고서의 분량은 <u>3page</u> 이내, 결과 보고서는 <u>4page</u> 이내로 작성합니다.
- 예비 학습 내용에 교재 외의 다른 자료를 참고한 경우, 출처를 명시합니다.
- PSpice에서 회로 구성할 때<u>자신의 학번과 이름</u>을 같이 작성하여 넣으세요.
- 파형에서 커서를 사용하여 측정값을 확인하세요.
- 예비보고서의 예비학습에 계산 과정을 작성합니다.
- 모든 실험 결과에 시뮬레이션 결과에 대한 설명을 작성합니다.

- 실험 1. 커패시터 방전 실험

 다음의 회로를 구성하고 방전 파형을 관측하고, 아래의 표를 완성하시오. 방전 파형을 시상수와 관련하여 설명하시오. 해당 PSpice 시뮬레이션 시 <u>반드시 커서를 사용하여</u> 시상수 관계를 나타내시오. 시뮬레이션 프로파일에서 <u>Run To Time은 반드시 1500ms</u>로 설정하시오. 다르게 설정되었을 시 감점입니다.

General	Analysis Type Time Domain (Transient) +	Run To Time	1500ms	seconds (TSTOP)		
vratysia	Options	Start saving data after :	0	seconds		
Contiguration Files Options Data Collection	General Settings Monte Carlo/Worst Case Parametric Sweep	Transient options Maximum Step Size Skip initial transient i	seconds bias point calculation (SKIPEP)			
iata Collection	Temperature (Seeep) Save Bras Point Load Bras Point Save Check Point Restart Simulation	Run in resume mode		Output File O	ptions.	

시뮬레이션 돌리기 전에 PSpisce>> Edit simulation profile이나 New Simulation profile에 들어가 run to time 꼭 설정하기

2. 예비 보고서 : PSpice 시뮬레이션 결과(회로, 파형, 커서 측정 표), 시상수 계산과정, 아래 표

3. 결과 보고서 : 오실로스코프 파형 사진, PSpice 시뮬레이션 결과(파형), 시상수 측정, 계산값, 오차(|오실로스코프 측정값 - 시뮬레이션 측정값|)

	오실로스코프 측정값	시뮬레이션 측정값	계산값	오차
시상수				

- 실험 2. 교류전원에서의 커패시터

 다음의 회로를 구성하고 파형을 관측하고, 아래의 표를 완성하시오. 스위치를 열고 난 후의 파형과 시상수의 관계에 대해 분석하시오. 해당 파형에서는 커서를 찍을 필요가 없습니다. 시뮬레이션 프로파일에서 <u>Run To Time은 반드시 5s, Maximum Step Size는 반드시</u> 1e-3으로 설정하시오.

2. 예비 보고서 : PSpice 시뮬레이션 결과(회로, 파형), 시상수 계산값, 계산 과정

	계산값
시상수	
시상수	

3. 결과 보고서 : 오실로스코프 파형 사진, PSpice 시뮬레이션 결과(파형), 시상수 계산값

	계산값
시상수	

* PSpice Cursor 사용법

			01	1 D 9 C 1 P 1 P 1			1CHD	ICHEMATIC'S rim			0							
2.0,0	19.		¥] #	• 🖽	X	2	E 4	1			2			2)	3		
6.1W																		
4.19		1																
		1																

① Toggle cursor : cursor 기능 활성화

② Cursor Search : cursor을 내가 원하는 정확한 지점으로 움직이는데 사용, 명령어 필요.
③ Mark label : cursor의 위치에 따른 값 표시.

* Cursor Search 명령어

 search [backword/forward] xvalue(값) : 현재 커서를 기준으로 앞 혹은 뒤쪽에서 x값이 값인 부분을 찾기 위한 명령어
 search [backword/forward] level(값) : 현재 커서를 기준으로 앞 혹은 뒤쪽에서 y값이

값인 부분을 찾기 위한 명령어

③ 더 많은 명령어는 Pspice의 HELP 참조

* 우측 하단 표에서 각 측정값과 차이 확인 가능

			ALC: NOT THE OWNER OF		10000	100 A 400 A		recourder 201 K)	1911000				
			100000000	X Values	100 000m	166	496m	-66	496m	Y1 - Y1(Cursort)	Y2 - Y2(Cursor2)	Max Y	Min Y
CURSOR 1.2	V(C1:2)	5.000		38	3.15	2	0.000	0.000	5.0000	1.8430			
		U	-	1						-			
	ISOR 1.2	ISOR 1.2 V(C12)	ISOR 1.2 V(C1:2) 5.000	SOR 12 V(C12) 5.000	SOR 12 V(C12) 5.000 38	SOR 12 V(C12) 5.000 38 2.1	SOR 12 V(C12) 5.000 538 2.112	SOR 12 V(C12) 5.000 38 3.112 0.000	ISOR 12 V(C12) 5.000 138 3.11 2 0.000 0.000	ISOR 12 V(C12) 5.000 38 3.112 0.000 0.000 5.0000			